Two-photon laser-scanning microscopy has become an essential tool for imaging neuronal functions in vivo and has been applied to different parts of the neural system, including the auditory system. However, many components of a two-photon microscope, such as galvanometer-based laser scanners, generate mechanical vibrations and thus acoustic artifacts, making it difficult to interpret auditory responses from recorded neurons. Here, we report the development of a silent two-photon imaging system and its applications in the common marmoset (Callithrix Jacchus), a non-human primate species sharing a similar hearing range with humans. By utilizing an orthogonal pair of acousto-optical deflectors (AODs), full-frame raster scanning at video rate was achieved without introducing mechanical vibrations. Imaging depth can be optically controlled by adjusting the chirping speed on the AODs without any mechanical motion along the Z-axis. Furthermore, all other sound-generating components of the system were acoustically isolated, leaving the noise floor of the working system below the marmoset’s hearing threshold. Imaging with the system in awake marmosets revealed many auditory cortex neurons that exhibited maximal responses at low sound levels, which were not possible to study using traditional two-photon imaging systems. This is the first demonstration of a silent two-photon imaging system that is capable of imaging auditory neuronal functions in vivo without acoustic artifacts. This capacity opens new opportunities for a better understanding of auditory functions in the brain and helps isolate animal behavior from microscope-generated acoustic interference.