Muscle spindles are sensory receptors in skeletal muscle that provide information on muscle length and velocity of contraction. Previous studies noted that facial muscles lack muscle spindles, but recent reports indicate that the human platysma muscle and “buccal” muscles contain spindles. Mammalian facial muscles are active in social communication, vibrissa movement, and vocalizations, including human speech. Given these functions, we hypothesized that facial muscles contain muscle spindles, and we predicted that humans would have the greatest number, given the role our lips play in speech. We examined previously sectioned and stained (with H&E and trichrome stains) orbicularis oris (upper fibers) and zygomaticus (major) muscles across a broad phylogenetic range of mammalian species, spanning a wide distribution of body size and ecological niche, to assess the presence of muscle spindles. We also stained several sections with Sirius red to highlight the muscle spindle capsule. Our results indicate that mammalian facial muscles contain muscle spindles, supporting our hypothesis. Contrary to our prediction, though, humans (and other primates) had the lowest number of muscle spindles. We instead found that the carnivoran sample and the horse sample had the greatest number of spindles. Larger body size and nocturnality were also associated with a greater number of spindles. These results must be viewed with caution, though, as our sample size was small and there are critical mammalian taxa missing. Future work should use an expanded phylogenetic range of mammalian species to ascertain the role that phylogeny plays in muscle spindle presence and count.