Objective: Severe pain and other symptoms in complex regional pain syndrome (CRPS), such as allodynia and hyperalgesia, are associated with abnormal resting-state brain network activity. No studies to date have examined resting-state brain networks in CRPS patients using electroencephalography (EEG), which can clarify the temporal dynamics of brain networks. Methods: We conducted microstate analysis using resting-state EEG signals to prospectively reveal direct correlations with pain intensity in CRPS patients (n = 17). Five microstate topographies were fitted back to individual CRPS patients’ EEG data, and temporal microstate measures were subsequently calculated. Results: Our results revealed five distinct microstates, termed microstates A to E, from resting EEG data in patients with CRPS. Microstates C, D and E were significantly correlated with pain intensity before pain treatment. Particularly, microstates D and E were significantly improved together with pain alleviation after pain treatment. As microstates D and E in the present study have previously been related to attentional networks and the default mode network, improvement in these networks might be related to pain relief in CRPS patients. Conclusions: The functional alterations of these brain networks affected the pain intensity of CRPS patients. Therefore, EEG microstate analyses may be used to identify surrogate markers for pain intensity.