The structural correlates of 'chronic hibernating myocardium' in man consist of myocardial cells which transformed from a functional state (rich in contractile material) to a surviving state (poor in contractile material, rich in glycogen). Since the calcium-handling organelles such as SR, sarcolemma and mitochondria underwent structural changes in cells so affected, the distribution of calcium was investigated in biopsies obtained from 'hibernating' areas. The material was processed for microscopic localization of total calcium (laser microprobe mass analysis, LAMMA) and of exchangeable calcium (phosphate-pyroantimonate precipitation method, PPA). Subcellular distribution of total calcium as assessed by LAMMA revealed that in the structurally affected cells the areas in which sarcomeres were replaced by glycogen contained significantly more calcium than all other areas probed such as mitochondria, remaining sarcomeres at the cell periphery and subcellular areas of normally structured cells. Calcium precipitate, obtained after PPA assessment, was localized at the sarcolemma but was virtually absent in the mitochondria of affected cells. The high calcium content in the myolytic areas of affected cells most probably belongs to a pool of bound calcium. The observations that calcium is retained at the sarcolemma and that mitochondria are devoid of precipitate favour the hypothesis that cells structurally affected as such are not ischaemic and are still able to regulate their calcium homeostasis.