The membrane fusion protein (MFP) component, MexA, of the MexAB-OprM multidrug efflux system of P. aeruginosa is proposed to link the inner (MexB) and outer (OprM) membrane components of this pump as a probable oligomer. A cross-linking approach confirmed the in vivo interaction of MexA and MexB, while a LexA-based assay for assessing protein-protein interaction similarly confirmed MexA multimerization. Mutations compromising the MexA contribution to antibiotic resistance but yielding wild-type levels of MexA were recovered and shown to map to two distinct regions within the N-and C-terminal halves of the protein. Most of the N-terminal mutations occurred at residues that are highly conserved in the MFP family (P68, G72, L91, A108, L110, and V129), consistent with these playing roles in a common feature of these proteins (e.g., oligomerization). In contrast, the majority of the C-terminal mutations occurred at residues poorly conserved in the MFP family (V264, N270, H279, V286, and G297), with many mapping to a region of MexA that corresponds to a region in the related MFP of Escherichia coli, AcrA, that is implicated in binding to its Pseudomonas aeruginosa is an opportunistic human pathogen characterized by an innate resistance to multiple antimicrobials (21). The resistance has historically been attributed to the presence in this organism of an outer membrane (OM) of low permeability (55), but it is increasingly clear that resistance owes much to the operation of broadly specific, so-called multidrug efflux systems (58-60, 64) that work synergistically with limited OM permeability (18,40,60). Several multidrug efflux systems in P. aeruginosa have been described to date (61), although the major system contributing to intrinsic multidrug resistance is encoded by the mexAB-oprM operon (38). Hyperexpression of this system also occurs in so-called nalB (27, 28, 75, 88)-and nalC (75, 88)-type multidrug-resistant mutants. MexAB-OprM accommodates a broad range of structurally diverse antimicrobials, including dyes, detergents, inhibitors of fatty acid biosynthesis, organic solvents, disinfectants, and clinically relevant antibiotics (10,34,37,39,41,42,48,70,74,74,76), and is implicated in the export of homoserine lactones involved in quorum sensing (17, 57) and, possibly, virulence factors (22).The MexAB-OprM efflux system, like the other tripartite Mex efflux systems in P. aeruginosa, consists of an inner membrane (IM) drug-proton antiporter of the resistance-nodulation-cell division (RND) family (MexB), an OM channel-forming component (OprM; also called OM factor [OMF]), and a periplasmic membrane fusion protein (MFP) (MexA) (58, 86). Crystal structures have not yet been reported for any of the efflux components of P. aeruginosa, although structures are available for the homologous OM (TolC [35]) and RND (AcrB [52]) components of the Mex-like AcrAB-TolC multidrug efflux system of Escherichia coli. The TolC channel is a trimer and spans both the OM (as a -barrel) and periplasm (as a ␣-helical barrel) (35). Measuri...