Respiratory sounds (RS) are produced by turbulent airflows through the airways and are
inhomogeneously transmitted through different media to the chest surface, where they can be recorded
in a non-invasive way. Due to their mechanical nature and airflow dependence, RS are affected by
respiratory diseases that alter the mechanical properties of the respiratory system. Therefore, RS provide
useful clinical information about the respiratory system structure and functioning.
Recent advances in sensors and signal processing techniques have made RS analysis a more objective
and sensitive tool for measuring pulmonary function. However, RS analysis is still rarely used in clinical
practice. Lack of a standard methodology for recording and processing RS has led to several different
approaches to RS analysis, with some methodological issues that could limit the potential of RS analysis
in clinical practice (i.e., measurements with a low number of sensors, no controlled airflows, constant
airflows, or forced expiratory manoeuvres, the lack of a co-analysis of different types of RS, or the use
of inaccurate techniques for processing RS signals).
In this thesis, we propose a novel integrated approach to RS analysis that includes a multichannel
recording of RS using a maximum of five microphones placed over the trachea and the chest surface,
which allows RS to be analysed at the most commonly reported lung regions, without requiring a large
number of sensors. Our approach also includes a progressive respiratory manoeuvres with variable
airflow, which allows RS to be analysed depending on airflow. Dual RS analyses of both normal RS
and continuous adventitious sounds (CAS) are also proposed. Normal RS are analysed through the RS
intensity–airflow curves, whereas CAS are analysed through a customised Hilbert spectrum (HS),
adapted to RS signal characteristics.
The proposed HS represents a step forward in the analysis of CAS. Using HS allows CAS to be fully
characterised with regard to duration, mean frequency, and intensity. Further, the high temporal and
frequency resolutions, and the high concentrations of energy of this improved version of HS, allow CAS
to be more accurately characterised with our HS than by using spectrogram, which has been the most
widely used technique for CAS analysis.
Our approach to RS analysis was put into clinical practice by launching two studies in the Pulmonary
Function Testing Laboratory of the Germans Trias i Pujol University Hospital for assessing pulmonary
function in patients with unilateral phrenic paralysis (UPP), and bronchodilator response (BDR) in
patients with asthma. RS and airflow signals were recorded in 10 patients with UPP, 50 patients with
asthma, and 20 healthy participants.
The analysis of RS intensity–airflow curves proved to be a successful method to detect UPP, since we
found significant differences between these curves at the posterior base of the lungs in all patients whereas no differences were found in the healthy participants. To the best of our knowledge, this is the
first study that uses a quantitative analysis of RS for assessing UPP.
Regarding asthma, we found appreciable changes in the RS intensity–airflow curves and CAS features
after bronchodilation in patients with negative BDR in spirometry. Therefore, we suggest that the
combined analysis of RS intensity–airflow curves and CAS features—including number, duration, mean
frequency, and intensity—seems to be a promising technique for assessing BDR and improving the
stratification of BDR levels, particularly among patients with negative BDR in spirometry.
The novel approach to RS analysis developed in this thesis provides a sensitive tool to obtain objective
and complementary information about pulmonary function in a simple and non-invasive way. Together
with spirometry, this approach to RS analysis could have a direct clinical application for improving the
assessment of pulmonary function in patients with respiratory diseases.
Los sonidos respiratorios (SR) se generan con el paso del flujo de aire a través de las vÃas respiratorias y se transmiten de forma no homogénea hasta la superficie torácica. Dada su naturaleza mecánica, los SR se ven afectados en gran medida por enfermedades que alteran las propiedades mecánicas del sistema respiratorio. Por lo tanto, los SR proporcionan información clÃnica relevante sobre la estructura y el funcionamiento del sistema respiratorio. La falta de una metodologÃa estándar para el registro y procesado de los SR ha dado lugar a la aparición de diferentes estrategias de análisis de SR con ciertas limitaciones metodológicas que podrÃan haber restringido el potencial y el uso de esta técnica en la práctica clÃnica (medidas con pocos sensores, flujos no controlados o constantes y/o maniobras forzadas, análisis no combinado de distintos tipos de SR o uso de técnicas poco precisas para el procesado de los SR). En esta tesis proponemos un método innovador e integrado de análisis de SR que incluye el registro multicanal de SR mediante un máximo de cinco micrófonos colocados sobre la tráquea yla superficie torácica, los cuales permiten analizar los SR en las principales regiones pulmonares sin utilizar un número elevado de sensores . Nuestro método también incluye una maniobra respiratoria progresiva con flujo variable que permite analizar los SR en función del flujo respiratorio. También proponemos el análisis combinado de los SR normales y los sonidos adventicios continuos (SAC), mediante las curvas intensidad-flujo y un espectro de Hilbert (EH) adaptado a las caracterÃsticas de los SR, respectivamente. El EH propuesto representa un avance importante en el análisis de los SAC, pues permite su completa caracterización en términos de duración, frecuencia media e intensidad. Además, la alta resolución temporal y frecuencial y la alta concentración de energÃa de esta versión mejorada del EH permiten caracterizar los SAC de forma más precisa que utilizando el espectrograma, el cual ha sido la técnica más utilizada para el análisis de SAC en estudios previos. Nuestro método de análisis de SR se trasladó a la práctica clÃnica a través de dos estudios que se iniciaron en el laboratorio de pruebas funcionales del hospital Germans Trias i Pujol, para la evaluación de la función pulmonar en pacientes con parálisis frénica unilateral (PFU) y la respuesta broncodilatadora (RBD) en pacientes con asma. Las señales de SR y flujo respiratorio se registraron en 10 pacientes con PFU, 50 pacientes con asma y 20 controles sanos. El análisis de las curvas intensidad-flujo resultó ser un método apropiado para detectar la PFU , pues encontramos diferencias significativas entre las curvas intensidad-flujo de las bases posteriores de los pulmones en todos los pacientes , mientras que en los controles sanos no encontramos diferencias significativas. Hasta donde sabemos, este es el primer estudio que utiliza el análisis cuantitativo de los SR para evaluar la PFU. En cuanto al asma, encontramos cambios relevantes en las curvas intensidad-flujo yen las caracterÃsticas de los SAC tras la broncodilatación en pacientes con RBD negativa en la espirometrÃa. Por lo tanto, sugerimos que el análisis combinado de las curvas intensidad-flujo y las caracterÃsticas de los SAC, incluyendo número, duración, frecuencia media e intensidad, es una técnica prometedora para la evaluación de la RBD y la mejora en la estratificación de los distintos niveles de RBD, especialmente en pacientes con RBD negativa en la espirometrÃa. El método innovador de análisis de SR que se propone en esta tesis proporciona una nueva herramienta con una alta sensibilidad para obtener información objetiva y complementaria sobre la función pulmonar de una forma sencilla y no invasiva. Junto con la espirometrÃa, este método puede tener una aplicación clÃnica directa en la mejora de la evaluación de la función pulmonar en pacientes con enfermedades respiratorias