NK cell responses depend on the balance of signals from inhibitory and activating receptors. However, how the integration of antagonistic signals occurs upon NK cell-target cell interaction is not fully understood. Here, we provide evidence that NK cell inhibition via the inhibitory receptor Ly49A is dependent on its relative colocalization at nanometer-scale with the activating receptor NKG2D upon immune synapse (IS) formation. NKG2D and Ly49A signal integration and colocalization was studied using NKG2D-GFP and Ly49A-RFP-expressing primary NK cells, forming ISs with NIH3T3 target cells, with or without expression of single chain trimer (SCT) H2-D d and an extended form of SCT H2-D d -CD4 MHC-I molecules. Nanoscale colocalization was assessed by Förster resonance energy transfer (FRET) between NKG2D-GFP and Ly49A-RFP and measured for each synapse. In the presence of their respective cognate ligands, NKG2D and Ly49A colocalize at a nanometer scale leading to NK cell inhibition. However, increasing the size of the Ly49A ligand reduced the nanoscale colocalization with NKG2D consequently impairing Ly49A-mediated inhibition. Thus, our data shows NK cell signal integration is critically dependent on the dimensions of NK cell ligand-receptor pairs by affecting their relative nanometer-scale colocalization at the IS. Together, our results suggest the balance of NK cell signals, and NK cell responses, are determined by the relative nanoscale colocalization of activating and inhibitory receptors in the immune synapse.
NK cell signal integration | FRET nanoscale localization | NKG2D | Ly49ACorrespondence:david.tomaz@kcl.ac.uk, r.henriques@ucl.ac.uk, k.gould@imperial.ac.uk Introduction NK cell activation is dependent on a different array of germline-encoded receptors capable of triggering effector responses against infection [1][2][3] and cellular transformation [4,5], and yet maintaining tolerance towards healthy cells and tissues [6,7]. NK cell functionality is widely characterized by a balance between activating and inhibitory receptors [8,9]. However, upon immune synapse formation, how NK cells integrate signals from functionally antagonistic receptors, is not yet fully understood [10]. One major hypothesis to explain immune signal integration is based on the kinetic segregation (K-S) model [11]. This model states that the balance of antagonistic signals is mediated by the equilibrium of phosphorylation (kinases) and dephosphorylation (phosphatases), which depends on the relative colocalization of receptors and their associated signaling molecules upon synapse formation. This hypothesis has been validated using T cells, in the context of TCR triggering [12,13] and, more recently, NK cells [14,15]. The K-S model suggests immune inhibition, upon immune synapse formation, is maintained by the dephosphorylation of tyrosines in stimulatory receptors (e.g ITAMs-associated receptors such as TCR-CD3 or NKG2D-DAP12), due to a nanoscale colocalization with receptors bearing phosphatase activity (e.g. CD45, CD148) or with t...