Arboreal locomotion allows access to above-ground resources and might have fostered the diversification of mammals. Nevertheless, simple morphological measurements that consistently correlate with arboreality remain indefinable. As such, the climbing habits of many species of mammals, living and extinct, remain speculative. We collected quantitative data on the climbing tendencies of 20 species of murine rodents, an ecologically and morphologically diverse clade. We leveraged Bayesian phylogenetic mixed models (BPMMs), incorporating intraspecific variation and phylogenetic uncertainty, to determine which, if any, traits (17 skeletal indices) predict climbing frequency. We used ordinal BPMMs to test the ability of the indices to place 48 murine species that lack quantitative climbing data into three qualitative locomotor categories (terrestrial, general and arboreal). Only two indices (both measures of relative digit length) accurately predict locomotor styles, with manus digit length showing the best fit. Manus digit length has low phylogenetic signal, is largely explained by locomotor ecology and might effectively predict locomotion across a multitude of small mammals, including extinct species. Surprisingly, relative tail length, a common proxy for locomotion, was a poor predictor of climbing. In general, detailed, quantitative natural history data, such as those presented here, are needed to enhance our understanding of the evolutionary and ecological success of clades.