Ethylene vinyl acetate (EVA) copolymers are widely employed as pour point depressants to enhance the flow properties of crude oil. However, EVA copolymers have limitations that necessitate their development. This work investigated the modification of EVA via gamma radiation-induced grafting of butyl acrylate (BuA) monomers and the evaluation of grafted EVA as a pour point depressant for crude oil. The successful grafting of poly(butyl acrylate) p(BuA) onto EVA was verified through grafting parameters, FTIR spectroscopy, and 1H NMR spectroscopy. Treating crude oil with 3000 ppm of (EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy yielded substantial reductions in pour point of 24, 21, and 21 °C, respectively. Also, rheological characterization demonstrated improving evidenced by a viscosity reduction of 76.20%, 67.70%, and 71.94% at 25 °C, and 83.16%, 74.98%, and 81.53% at 12 °C. At low dosages of 1000 ppm, the EVA-g-p(BuA) exhibited superior pour point reductions compared to unmodified EVA, highlighting the benefit of incorporating p(BuA) side chains. The grafted EVA copolymers with p(BuA) side chains showed excellent potential as crude oil flow improvers by promoting more effective adsorption and co-crystallization with paraffin wax molecules.