In this work high strength and tough metal‐ceramic laminated composites were fabricated by spark plasma sintering (SPS) of Ti3Al(Si)C2 MAX‐phase filled preceramic papers (TAC) and ductile Nb foils. The sintering was carried out at 1250 °C and 50 MPa for 5‐20 min. Various stacking techniques were used to obtain Nb/TAC laminated composites with different architectures. SPS results in the formation of reaction layer (RL) with a complex composition, which thickness changes insignificantly with increasing sintering time. The possible formation mechanism of RL was discussed. The bending strength of Nb/TAC composites was decreased from 410 to 350 MPa when lowering the thickness of ceramic layer. The maximum fracture toughness of 10.2 MPa·m1/2 was achieved for the composite with similar individual layers thickness. The toughening was explained by complex fracture mechanisms associated with deflection and branching of cracks at interfaces, delamination, plastic deformation of Nb layers, multiple cracking and crack deflection in ceramic TAC layers.This article is protected by copyright. All rights reserved.