Pollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2-effects are specified is unclear. Spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labelling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, AtPIP5K2 and NtPIP5K6 display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2 and NtPIP5K6 variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, PI4P 5-kinase variants targeted to nanodomains stabilized actin, suggesting a specific function of PtdIns(4,5)P2-nanodomains. A distinct role of nanodomain-associated AtPIP5K2 in actin regulation is further supported by proximity to and interaction with the Rho-GTPase NtRac5, and by functional interplay with elements of ROP-signalling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2-functions to coordinate cytoskeletal dynamics and secretion in pollen tubes.