Background: Epidemiologic and animal studies provide evidence for a chemopreventive effect of selenium on colorectal cancer, which may be mediated by the antioxidative and anti-inflammatory properties of selenoenzymes. We therefore investigated whether genetic variants in selenoenzymes abundantly expressed in the colon are associated with advanced colorectal adenoma, a cancer precursor. Methods: Cases with a left-sided advanced adenoma (n = 772) and matched controls (n = 777) screen negative for polyps based on sigmoidoscopy examination were randomly selected from participants in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. The underlying genetic variation was determined by resequencing. We genotyped 44 tagging single nucleotide polymorphisms (SNP) in six genes [glutathione peroxidase 1-4 (GPX1, GPX2, GPX3, and GPX4), selenoprotein P (SEPP1), and thioredoxin reductase 1 (TXNRD1)] to efficiently predict common variation across these genes. Results: Four variants in SEPP1 were significantly associated with advanced adenoma risk. A rare variant in the 5 ¶ region of SEPP1 (-4166C>G) was present in nine cases but in none of the controls (exact P = 0.002). Three SNPs located in the 3 ¶ region of SEPP1, which