Fundamental Issues Regarding Uncertainties in Artificial Neural Networks
Neil A. Thacker,
Carole J. Twining,
Paul D. Tar
et al.
Abstract:Artificial Neural Networks (ANNs) implement a specific form of multi-variate extrapolation and will generate an output for any input pattern, even when there is no similar training pattern. Extrapolations are not necessarily to be trusted, and in order to support safety critical systems, we require such systems to give an indication of the training sample related uncertainty associated with their output. Some readers may think that this is a well known issue which is already covered by the basic principles of … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.