We provide a versatile upper bound on the number of maximally entangled qubits, or private bits, shared by two parties via a generic adaptive communication protocol over a quantum network when the use of classical communication is not restricted. Although our result follows the idea of Azuma et al (2016 Nat. Commun. 7 13523) of splitting the network into two parts, our approach relaxes their strong restriction, consisting of the use of a single entanglement measure in the quantification of the maximum amount of entanglement generated by the channels. In particular, in our bound the measure can be chosen on a channel-by-channel basis, in order to make it as tight as possible. This enables us to apply the relative entropy of entanglement, which often gives a state-of-the-art upper bound, on every Choi-simulable channel in the network, even when the other channels do not satisfy this property. We also develop tools to compute, or bound, the max-relative entropy of entanglement for channels that are invariant under phase rotations. In particular, we present an analytical formula for the max-relative entropy of entanglement of the qubit amplitude damping channel.
IntroductionWhenever two parties, say Alice and Bob, want to communicate by using a quantum channel, its noise unavoidably limits their communication efficiency [1]. In the limit of many channel uses, their asymptotic optimal performance can be quantified by the channel capacity, which represents the supremum of the number of qubits/bits that can be faithfully transmitted per channel use. Obtaining an exact expression for this quantity is typically far from trivial. Indeed, in addition to the difficulty of studying the asymptotic behaviour of the channel, the value of the capacity also depends on the task Alice and Bob want to perform, as well as on the free resources available to them [1]. Two representative tasks, which will be considered in our paper, involve the generation and distribution of a string of shared private bits (pbits) [2,3] or of maximally entangled states (ebits) [4]. These are known to be fundamental resources for more complex protocols, such as secure classsical communication [5,6], quantum teleportation [7], and quantum state merging [8]. An example of free resource involves the possibility of exchanging classical information over a public classical channel, such as a telephone line or over the internet. Depending on the restrictions on this, the capacity is said to be assisted by zero, forward, backward, or two-way classical communication [1]. In this paper we will focus on the last option, that is, no restriction will be imposed on the use of classical communication.Although the capacity of a quantum channel is by definition an abstract and theoretical quantity, it is also practically useful in that it can be compared with the performance of known transmission schemes. This comparison could then give an indication on the extent of improvements that could be expected in the future. From this perspective, similar conclusions could be obt...