A novel micro planar fuel cell power supplier, in which a six‐cell PEM unitised regenerative fuel cell (URFC) stack is used as the power generator, was designed and fabricated. Six membrane electrode assemblies were prepared and integrated on one piece of membrane by spraying catalyst slurry on both sides of the membrane. Each cell was made by sandwiching a membrane electrode assembly (MEA) between two graphite monopolar plates and six cell units were mechanically fixed in two organic glass endplates. When the stack was operated in an electrolysis mode, hydrogen was generated from the splitting of water and stored using a hydrogen storage alloy; conversely, when the stack was operated in fuel cell mode, hydrogen was supplied by the hydrogen storage alloy and oxygen was supplied from air by self‐breathing of the cathode. At room temperature and standard atmospheric pressure, the open‐circuit voltage (OCV) of the system reached 4.9 V, the system could be discharged at a constant current density of 20 mA cm–2 for about 40 min, and the work voltage was ∼2.9 V. The system showed good stability for 10 charge–discharge cycles.