Nanomaterials have played a significant role in effectively combating the global SARS-CoV-2 pandemic that began in December 2019 through the development of vaccines as well as antiviral therapies. These versatile, tunable materials can interact and deliver a broad range of biologically relevant molecules for preventing COVID-19 infection, generating immunity against COVID-19, and treating infected patients. Application of these nanomaterials and nanotechnologies can further be investigated in conjunction with disease models of COVID-19 and this holds immense potential for accelerating vaccine or therapeutic process development further encouraging the elimination of animal model use during preclinical stages. This review examines the existing literature on COVID-19 related nanomaterial applications, including perspective on nanotechnology-based vaccines and therapeutics, and discusses how these tools can be adapted to address new SARS-CoV-2 variants of concern. We also analyze the limitations of current nanomaterial approaches to managing COVID-19 and its variants alongside the challenges posed when implementing this technology. We end by providing avenues for future developments specific to disease modelling in this ever-evolving field.