The culturable yeast communities in temperate forest soils under the ornithogenic influence were studied in a seasonal dynamic. To investigate the intense ornithogenic influence, conventional and “live” feeders were used, which were attached to trees in the forest and constantly replenished throughout the year. It was found that the yeast abundance in the soil under strong ornithogenic influence reached the highest values in winter compared to the other seasons and amounted to 4.8 lg (cfu/g). This was almost an order of magnitude higher than the minimum value of yeast abundance in ornithogenic soils determined for summer. A total of 44 yeast species, 21 ascomycetes and 23 basidiomycetes, were detected in ornithogenic soil samples during the year. These included soil-related species (Barnettozyma californica, Cyberlindnera misumaiensis, Cutaneotrichosporon moniliiforme, Goffeauzyma gastrica, Holtermanniella festucosa, Leucosporidium creatinivorum, L. yakuticum, Naganishia adeliensis, N. albidosimilis, N. globosa, Tausonia pullulans, and Vanrija albida), eurybionts (yeast-like fungus Aureobasidium pullulans, Debaryomyces hansenii, and Rhodotorula mucilaginosa), inhabitants of plant substrates and litter (Cystofilobasidium capitatum, Cys. infirmominiatum, Cys. macerans, Filobasidium magnum, Hanseniaspora uvarum, Metschnikowia pulcherrima, and Rh. babjevae) as well as a group of pathogenic and opportunistic yeast species (Arxiozyma bovina, Candida albicans, C. parapsilosis, C. tropicalis, Clavispora lusitaniae, and Nakaseomyces glabratus). Under an ornithogenic influence, the diversity of soil yeasts was higher compared to the control, confirming the uneven distribution of yeasts in temperate forest soils and their dependence on natural hosts and vectors. Interestingly, the absolute dominant species in ornithogenic soils in winter (when the topsoil temperature was below zero) was the basidiomycetous psychrotolerant yeast T. pullulans. It is regularly observed in various soils in different geographical regions. Screening of the hydrolytic activity of 50 strains of this species at different temperatures (2, 4, 10, 15 and 20 °C) showed that the activity of esterases, lipases and proteases was significantly higher at the cultivation temperature. Ornithogenic soils could be a source for the relatively easy isolation of a large number of strains of the psychrotolerant yeast T. pullulans to test, study and optimize their potential for the production of cold-adapted enzymes for industry.