Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The conventional farming system, which predominates in most countries, is based on the use of agrochemical deep ploughing and other special methods. However, intensive farming has several negative impacts, including soil and water pollution and reduced biodiversity. The microbial community plays a crucial role in maintaining the health of agricultural ecosystems. In this context, we need to study how different agricultural practices affect the structural and functional characteristics of agricultural ecosystems. This study assessed the diversity, structure, and functional characteristics of the soil bacterial community in two different cropping systems. The subjects of the study were soil samples from Chernozem, which had been cultivated using the organic method for 11 years and the conventional method for 20 years. The fields are located in the southern part of the Russian Federation. Our results indicated minimal differences in the microbial diversity and soil community composition between the two systems studied. The profiling of the soil bacterial community revealed differences in the abundances of Proteobacteria, Bacteroidota, and Cyanobacteria, which were predominated in the conventional farming system (CFS), while Methylomirabilota and Fusobacteriota were more abundant in the organic farming system (OFS). Bacterial taxa and functional genes associated with nitrogen, phosphorus, and sulphur cycling were found to be more abundant in CFS soils than in OFS soils. The instrumental measurement of soil metabolic activity and microbial biomass content showed that CFS soils had higher microbiome activity than OFS soils. Overall, the study found that the agronomic practices used in conventional farming not only help to maintain the functional properties of the soil microbiome, but also significantly increase its microbiological activity and nutrient bioconversion, compared to organic farming practices.
The conventional farming system, which predominates in most countries, is based on the use of agrochemical deep ploughing and other special methods. However, intensive farming has several negative impacts, including soil and water pollution and reduced biodiversity. The microbial community plays a crucial role in maintaining the health of agricultural ecosystems. In this context, we need to study how different agricultural practices affect the structural and functional characteristics of agricultural ecosystems. This study assessed the diversity, structure, and functional characteristics of the soil bacterial community in two different cropping systems. The subjects of the study were soil samples from Chernozem, which had been cultivated using the organic method for 11 years and the conventional method for 20 years. The fields are located in the southern part of the Russian Federation. Our results indicated minimal differences in the microbial diversity and soil community composition between the two systems studied. The profiling of the soil bacterial community revealed differences in the abundances of Proteobacteria, Bacteroidota, and Cyanobacteria, which were predominated in the conventional farming system (CFS), while Methylomirabilota and Fusobacteriota were more abundant in the organic farming system (OFS). Bacterial taxa and functional genes associated with nitrogen, phosphorus, and sulphur cycling were found to be more abundant in CFS soils than in OFS soils. The instrumental measurement of soil metabolic activity and microbial biomass content showed that CFS soils had higher microbiome activity than OFS soils. Overall, the study found that the agronomic practices used in conventional farming not only help to maintain the functional properties of the soil microbiome, but also significantly increase its microbiological activity and nutrient bioconversion, compared to organic farming practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.