Medullary thyroid carcinoma (MTC), a tumor derived from the neural crest, occurs either sporadically or as the dominant component of the type 2 multiple endocrine neoplasia (MEN) syndromes, MEN2A and MEN2B. The discovery that mutations in the RET protooncogene cause hereditary MTC was of great importance, since it led to the development of novel methods of diagnosis and treatment. For example, the detection of a mutated RET allele in family members at risk for inheriting MEN2A or MEN2B signaled that they would develop MTC, and possibly other components of the syndromes. Furthermore, the detection of a mutated allele created the opportunity, especially in young children, to remove the thyroid before MTC developed, or while it was confined to the gland. The discovery also led to the development of molecular targeted therapeutics (MTTs), mainly tyrosine kinase inhibitors, which were effective in the treatment of patients with locally advanced or metastatic MTC. While responses to MTTs are often dramatic, they are highly variable, and almost always transient, because the tumor cells become resistant to the drugs. Clinical investigators and the pharmaceutical industry are focusing on the development of the next generation of MTTs, which have minimal toxicity and greater specificity for mutated RET.