In this study, the authors attempt to explore the boundary feedback stabilisation for an unstable heat process described by fractional-order partial differential equation (PDE), where the first-order time derivative of normal reaction-diffusion equation is replaced by a Caputo time fractional derivative of order α ∈ (0, 1]. By designing an invertible coordinate transformation, the system under consideration is converted into a Mittag-Leffler stability linear system and the boundary stabilisation problem is transformed into a problem of solving a linear hyperbolic PDE. It is worth mentioning that with the help of this invertible coordinate transformation, they can explicitly obtain the closed-loop solutions of the original problem. The output feedback problem with both anti-collocated and collocated actuator/sensor pairs in one-dimensional domain is also presented. A numerical example is given to test the effectiveness of the authors' results.