Light trapping is crucial for low-cost and highly efficient nanowire (NW) solar cells (SCs). In order to increase the light absorption through the NWSCs, plasmonic materials can be incorporated inside or above the NW design. In this regard, two novel designs of plasmonic NWSCs are reported and analyzed using 3D finite difference time domain method. The geometrical parameters of the reported designs are studied to improve their electrical and optical efficiencies. The ultimate and power conversion efficiencies (PCE) are used to quantify the conversion efficiency of the light into electricity. The first design relies on funnel shaped SiNWs with plasmonic core while the cylindrical NWs of the second design are decorated by Ag diamond shaped. The calculated ultimate efficiency and PCE of the plasmonic funnel design are equal to 44% and 18.9%, respectively with an enhancement of 43.3 % over its cylindrical NWs counterpart. This enhancement can be explained by the coupling between the three optical modes, supported by the upper cylinder, lower cone and plasmonic material. Moreover, the cylindrical SiNWs decorated by Ag diamond offer an ultimate efficiency and short-circuit current density of 25.7%, and 21.03 mA∕cm 2 , respectively with an improvement of 63% over the conventional cylindrical SiNWs.