For several classical nonnegative integer functions, we investigate if they are members of the counting complexity class #P or not. We prove #P membership in surprising cases, and in other cases we prove non-membership, relying on standard complexity assumptions or on oracle separations.We initiate the study of the polynomial closure properties of #P on affine varieties, i.e., if all problem instances satisfy algebraic constraints. This is directly linked to classical combinatorial proofs of algebraic identities and inequalities. We investigate #TFNP and obtain oracle separations that prove the strict inclusion of #P in all standard syntactic subclasses of #TFNP − 1.