JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. abstract: Imbalances in phylogenetic diversity could be the result of variable diversification rates, differing limits on diversity, or a combination of the two. We propose an approach to distinguish between rates and limits as the primary cause of phylogenetic imbalance, using parasitic plants as a model. With sister-taxon comparisons, we show that parasitic plant lineages are typically much less diverse than their autotrophic sisters. We then use age estimates for taxa used in the sister-taxon comparisons to test for correlations between clade age and clade diversity. We find that parasitic plant diversity is not significantly correlated with the age of the lineage, whereas there is a strong positive correlation between the age and diversity of nonparasitic sister lineages. The Ericaceae sister pair Monotropoideae (parasitic) and Arbutoideae (autotrophic) is sufficiently well sampled at the species level to allow more parametric comparisons of diversification patterns. Model fitting for this group supports ecological limitation in Monotropoideae and unconstrained diversification in Arbutoideae. Thus, differences in diversity between parasitic plants and their autotrophic sisters might be caused by a combination of ecological limitation and exponential diversification. A combination of sister-taxon comparisons of diversity and age, coupled with model fitting of well-sampled phylogenies of focal taxa, provides a powerful test of likely causes of asymmetry in the diversity of lineages.