Lipid and water diffusion coefficients in bicontinuous cubic liquid crystalline phases have been determined with the NMR pulsed magnetic field gradient technique. In the monoolein-water system, a discontinuity in the variation of the water diffusion coefficient with water content is observed, which coincides with the two-phase region between the two cubic phases in this system. The degree of water association to the lipid has been determined, considering the obstruction factor for diffusion in the cubic phases. The lipid diffusion coefficient increases with increased unsaturation of the lipid, and decreases when larger amphiphile molecules like cholesterol, gramicidin-A, and lyso-oleoyl-phosphatidylcholine are solubilized in the cubic phase. In a cubic liquid crystal of monoolein (MO), dioleoylphosphatidylcholine (DOPC), and water, the individual lipid diffusion coefficients have been determined simultaneously in the same sample. The diffusion coefficients of MO and DOPC differ by a factor of two, and both decrease with increasing DOPC content. The results are discussed in relation to probe techniques for measurements of lipid diffusion.