Existing research has found that spatial attention alters how various stimulus properties are perceived (e.g., luminance, saturation), but few have explored whether it improves the accuracy of perception. To address this question, we performed two experiments using modified Posner cueing tasks, wherein participants made speeded detection responses to peripheral colour targets and then indicated their perceived colours on a colour wheel. In E1, cues were central and endogenous (i.e., prompted voluntary attention) and the interval between cues and targets (stimulus onset asynchrony, or SOA) was always 800 ms. In E2, cues were peripheral and exogenous (i.e., captured attention involuntarily) and the SOA varied between short (100 ms) and long (800 ms). A Bayesian mixed-model analysis was used to isolate the effects of attention on the probability and the fidelity of colour encoding. Both endogenous and short-SOA exogenous spatial cueing improved the probability of encoding the colour of targets. Improved fidelity of encoding was observed in the endogenous but not in the exogenous cueing paradigm. With exogenous cues, inhibition of return (IOR) was observed in both RT and probability at the long SOA. Overall, our findings reinforce the utility of continuous response variables in the research of attention.