Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Production in mature offshore Mexico fields is mostly driven by gas injected from surface. With time, injected gas flows directly through natural fractures in the low-pressure carbonate reservoirs, leaving oil trapped in the low-permeability matrix and reducing crude production. Over the past few years, the gas-oil contact has rapidly moved across those fields making conventional gas shutoff techniques both unsuccessful and uneconomic. An innovative approach introducing a fit-for-purpose polymer foam system (PFS) and its accurate placement using coiled tubing (CT) real-time telemetry addresses those challenges with an unprecedented success rate while optimizing both logistics and operational time. To selectively shut off unwanted gas in these naturally fractured reservoirs, the PFS was designed to have a high foam quality and low density. Thanks to a delayed crosslinker, this formulation enables deep penetration along the fractures and fissures before the gel strength develops. To ensure effective placement of the PFS and its activation at the right depth, CT downhole gauges monitor pressure and temperature throughout the pumping stages. Any deviation from the downhole schedule can swiftly be addressed to maximize shutoff effectiveness at depth. Monitoring of downhole parameters is not only instrumental to the PFS placement, it is also critical to other services associated with conformance operations. Thanks to the casing collar locator and gamma ray signals, it enables accurate depth control during perforating and stimulation phases. This system also facilitates the evaluation of the wellbore response after each main stage of the intervention. Finally, it can help perforate new intervals with minimum impact to the already pumped conformance treatment through the use of a new perforating firing head whose activation is controlled through fiber optics rather than triggered by hydraulics. The introduction of this methodology in offshore Mexico led to an increased success rate in gas shutoff operations. Of the nine wells that had interventions performed in 2015, eight were initially closed to production due to high gas production. Following the shutoff interventions, those wells were put back in production with an average reduction of 8.0 MMscf/d in gas produced per well and an average increase of 600 BOPD in oil produced per well. Near the end of the campaign, average oil produced per well reached 830 BOPD thanks to further improvements in the operational workflow. This approach constitutes a significant step forward in terms of efficiency and economic sustainability. The use of CT to perform all the stages of conformance operations greatly improved logistics on the platforms. In addition, the real-time monitoring capabilities of the system and flexibility of its downhole toolstring enabled an enhanced level of evaluation throughout the interventions, which, in turn, optimized the outcome and saved days of operation.
Production in mature offshore Mexico fields is mostly driven by gas injected from surface. With time, injected gas flows directly through natural fractures in the low-pressure carbonate reservoirs, leaving oil trapped in the low-permeability matrix and reducing crude production. Over the past few years, the gas-oil contact has rapidly moved across those fields making conventional gas shutoff techniques both unsuccessful and uneconomic. An innovative approach introducing a fit-for-purpose polymer foam system (PFS) and its accurate placement using coiled tubing (CT) real-time telemetry addresses those challenges with an unprecedented success rate while optimizing both logistics and operational time. To selectively shut off unwanted gas in these naturally fractured reservoirs, the PFS was designed to have a high foam quality and low density. Thanks to a delayed crosslinker, this formulation enables deep penetration along the fractures and fissures before the gel strength develops. To ensure effective placement of the PFS and its activation at the right depth, CT downhole gauges monitor pressure and temperature throughout the pumping stages. Any deviation from the downhole schedule can swiftly be addressed to maximize shutoff effectiveness at depth. Monitoring of downhole parameters is not only instrumental to the PFS placement, it is also critical to other services associated with conformance operations. Thanks to the casing collar locator and gamma ray signals, it enables accurate depth control during perforating and stimulation phases. This system also facilitates the evaluation of the wellbore response after each main stage of the intervention. Finally, it can help perforate new intervals with minimum impact to the already pumped conformance treatment through the use of a new perforating firing head whose activation is controlled through fiber optics rather than triggered by hydraulics. The introduction of this methodology in offshore Mexico led to an increased success rate in gas shutoff operations. Of the nine wells that had interventions performed in 2015, eight were initially closed to production due to high gas production. Following the shutoff interventions, those wells were put back in production with an average reduction of 8.0 MMscf/d in gas produced per well and an average increase of 600 BOPD in oil produced per well. Near the end of the campaign, average oil produced per well reached 830 BOPD thanks to further improvements in the operational workflow. This approach constitutes a significant step forward in terms of efficiency and economic sustainability. The use of CT to perform all the stages of conformance operations greatly improved logistics on the platforms. In addition, the real-time monitoring capabilities of the system and flexibility of its downhole toolstring enabled an enhanced level of evaluation throughout the interventions, which, in turn, optimized the outcome and saved days of operation.
Maximizing reservoir contact through extended-reach and mega-reach wells has become a prevalent field development strategy for major offshore operators in the Middle East. This is especially true for the giant oilfield "A", where drilling targets go beyond 40,000 ft. measured depth (MD), with MD/TVD ratios in excess of 4.5:1. Such challenging horizons call for a detailed re-evaluation of well interventions. In 2019, the well surveillance program in the field A required intervention in a mega-reach well with a MD over 35,500 ft. and 4.5:1 MD/TVD ratio. This reach was unthinkable only a few years ago but has been made possible thanks to several recent key technological advancements, such as coiled tubing (CT) equipped with optical fiber and new CT hydraulic tractors, proactive and detailed planning during the drilling phase, the development of highly engineered CT string designs, surface equipment upgrades, and accurate software modeling. The target well is an oil producer with horizontal section beyond 23,000 ft., completed with 6 5/8-in. pre-perforated liner and 23 swellable packers placed across the 8 1/2-in. open hole section. A multiphase production logging tool was selected to assess the production profile along its horizontal drain. With a target depth beyond the reach of conventional wireline, CT equipped with optical fiber emerged as the optimum solution to facilitate reach and overcome the weight and pumping limitations of wired CT. A comprehensive CT reach modeling exercise compared the performance of several 2-in. and 2 3/8-in. CT string designs and identified operational requirements and reach gains from CT hydraulic tractors. As a result, an engineered 2-in. CT tapered string of near 36,700 ft. was developed, capable of being equipped with optical fiber line, while delivering the required flow rate and differential pressure to the CT hydraulic tractor without compromising any operational safety margin. At the time of manufacturing, this was considered the longest CT string ever produced and fitted for downhole telemetry. The operation itself set new records for well interventions in mega-reach wells, with a CT reach above 35,500 ft. MD, including a hydraulic tractoring footage over 15,650 ft. MD with spaced slugs of chemical friction reducer. This case study explains how to develop a safe, robust, and effective solution to mega-reach well challenges using the CT-conveyed optical fiber telemetry technology in one of the deepest wells in the field A, setting a new global record in CT reach. The lessons learned are now the reference for other operators in the Middle East and across the globe for performing interventions in wells that continue to be stretched in its extended reach. It also depicts why telemetry through optical fiber is key to the success of such projects and provides an overview of technology needs for the future of mega-reach well developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.