Orchids of the genus Bletilla are well-known ornamental plants and sources of traditional medicine in Asia that rely on the symbiotic relationship with root endophytic fungi throughout their whole life cycle. However, little is known about their fungal partners, infection pattern, and pathways of carbon gain. We investigated carbon and nitrogen stable isotope patterns in different organs of three Bletilla species, identified the root endophytic fungal community composition, and determined mycorrhizal colonization rates. The three Bletilla species were comprised by a polyphyletic group which belongs to different trophic modes, such as saprotroph, pathotroph, and symbiotroph; however, the dominant species and their abundances varied among Bletilla spp. Mycorrhizal infection rates also varied among Bletilla species, with B. striata (65% ± 25%) being significantly higher than those of B. formosana (35% ± 16%) and B. ochracea (22% ± 13%). Compared with surrounding autotrophic plants, all Bletilla spp. were significantly enriched in 13C with B. striata to a significantly higher level than other two Bletilla species. Among different organs, stems had higher δ13C values, while leaves and flowers had higher δ15N and total N content values across all three species. Our results indicate that the symbiotic relationship of Bletilla and its root endophytic fungi is not strictly specific. Although mycorrhizal infection rates were highly variable, the three Bletilla species had the same infection pattern with hyphae penetrating the cortex cell by the pathway cell. Different Bletilla species have different strategies for C allocation among plant organs. These findings provide new insights into the ecological adaptation of orchids and will contribute to Bletilla germplasm conservation and sustainable utilization.