Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Seawater batteries (SWBs) are green aqueous power sources with great potential in marine applications. So far, SWBs are mainly built on rigid substrates, which hinders their adaptability to marine textile applications. Herein, we constructed a rechargeable yarn-shaped SWB consisting of nickel hexacyanoferrate (Ni-HCF)-modified carbon yarn (positive electrode), glass fiber diaphragm, and polyimide (PI)-modified carbon yarn (negative electrode). To improve the performance of carbon yarn-based electrodes, a twisting-after-coating (TAC) technique was developed to replace the conventional twisting-before-coating (TBC) technique for immobilizing active materials. The TAC technique could fully utilize the internal spaces between adjacent fibers in carbon yarns and avoid the accumulation of active materials on the electrode surface. Taking the Ni-HCF-modified electrode as an example, its maximum specific capacity could reach 64.2 mAh/g, significantly higher than that (54.5 mAh/g) of the electrode prepared by the TBC technique. The improvement could be explained by embedding the active materials in the yarn and the close contact between the active materials and the carbon fibers caused by the twisting. The Ni-HCF-modified and PI-modified yarn electrodes prepared by the TAC technique were assembled to construct a yarn-shaped SWB that exhibits good rate performance, excellent flexibility, and high cycling stability. The yarn-shaped SWBs were further woven into a fishing net-like textile. After being soaked with seawater and electrically charged, the textile can successfully power a light panel composed of 10 light-emitting diodes, demonstrating the potential of yarn-shaped SWBs for power supply in marine.
Seawater batteries (SWBs) are green aqueous power sources with great potential in marine applications. So far, SWBs are mainly built on rigid substrates, which hinders their adaptability to marine textile applications. Herein, we constructed a rechargeable yarn-shaped SWB consisting of nickel hexacyanoferrate (Ni-HCF)-modified carbon yarn (positive electrode), glass fiber diaphragm, and polyimide (PI)-modified carbon yarn (negative electrode). To improve the performance of carbon yarn-based electrodes, a twisting-after-coating (TAC) technique was developed to replace the conventional twisting-before-coating (TBC) technique for immobilizing active materials. The TAC technique could fully utilize the internal spaces between adjacent fibers in carbon yarns and avoid the accumulation of active materials on the electrode surface. Taking the Ni-HCF-modified electrode as an example, its maximum specific capacity could reach 64.2 mAh/g, significantly higher than that (54.5 mAh/g) of the electrode prepared by the TBC technique. The improvement could be explained by embedding the active materials in the yarn and the close contact between the active materials and the carbon fibers caused by the twisting. The Ni-HCF-modified and PI-modified yarn electrodes prepared by the TAC technique were assembled to construct a yarn-shaped SWB that exhibits good rate performance, excellent flexibility, and high cycling stability. The yarn-shaped SWBs were further woven into a fishing net-like textile. After being soaked with seawater and electrically charged, the textile can successfully power a light panel composed of 10 light-emitting diodes, demonstrating the potential of yarn-shaped SWBs for power supply in marine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.