2022
DOI: 10.3390/rs14040850
|View full text |Cite
|
Sign up to set email alerts
|

Fusion Classification of HSI and MSI Using a Spatial-Spectral Vision Transformer for Wetland Biodiversity Estimation

Abstract: The rapid development of remote sensing technology provides wealthy data for earth observation. Land-cover mapping indirectly achieves biodiversity estimation at a coarse scale. Therefore, accurate land-cover mapping is the precondition of biodiversity estimation. However, the environment of the wetlands is complex, and the vegetation is mixed and patchy, so the land-cover recognition based on remote sensing is full of challenges. This paper constructs a systematic framework for multisource remote sensing imag… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
9
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 17 publications
(9 citation statements)
references
References 43 publications
0
9
0
Order By: Relevance
“…-LU/LC Wetland biodiversity estimation ZiYhis1-02D-HSI (30 m) (2) No - [467,468] [193] LU/LC Wetland biodiversity estimation ZiYuan1-02D-MSI (10 m) No -[468] - (1) This parameter was mapped and monitored together with other parameters; (2) hyperspectral data. -LAI (1) Mangrove ecosystems MODIS Yes --[470] LAI (1) Mangrove ecosystems Landsat (15-30 m) No -[365] -LAI (1) Mangrove ecosystems Sentinel-2 (10-20-60 m) No - [365] [123] LAI (1) Mangrove ecosystems SPOT (~10-20 m) No -[365] -LAI (1) Mangrove ecosystems WorldView-2 (~0.5-2 m) No --[123] LAI (1) Mangrove ecosystems UAV No --[123] LAI (1) Seagrass Landsat (15-30 m) No - [233] - (1) Coastline change Landsat (15…”
Section: Parametermentioning
confidence: 99%
See 1 more Smart Citation
“…-LU/LC Wetland biodiversity estimation ZiYhis1-02D-HSI (30 m) (2) No - [467,468] [193] LU/LC Wetland biodiversity estimation ZiYuan1-02D-MSI (10 m) No -[468] - (1) This parameter was mapped and monitored together with other parameters; (2) hyperspectral data. -LAI (1) Mangrove ecosystems MODIS Yes --[470] LAI (1) Mangrove ecosystems Landsat (15-30 m) No -[365] -LAI (1) Mangrove ecosystems Sentinel-2 (10-20-60 m) No - [365] [123] LAI (1) Mangrove ecosystems SPOT (~10-20 m) No -[365] -LAI (1) Mangrove ecosystems WorldView-2 (~0.5-2 m) No --[123] LAI (1) Mangrove ecosystems UAV No --[123] LAI (1) Seagrass Landsat (15-30 m) No - [233] - (1) Coastline change Landsat (15…”
Section: Parametermentioning
confidence: 99%
“…The eligible papers that mapped and/or monitored vegetation species. Coastal vegetation (1) Coastal vulnerability assessment Sentinel-2 (10-20-60 m) No -- [166] Coastal vegetation (1) Habitat GaoFen2 (0.8-3.2 m) No --[559] Coastal vegetation (1) Habitat Google Earth image No --[164] Coastal vegetation (1) Habitat Landsat (15-30 m) No --[424,559] Coastal vegetation (1) Habitat RapidEye (5 m) No -- [424] Coastal vegetation (1) Wetland Biodiversity Estimation ZiYuan1-02D-HIS (30 m) (2) No - [467] -Coastal vegetation (1) Wetland Biodiversity Estimation ZiYuan1-02D-MSI (10 m) No -[467] -Invasive species (1) Coastal vulnerability assessment Landsat (15-30 m) No [55] - [413] Invasive species (1) Invasive alien species Landsat (15-30 m) No --[520] Invasive species (1) Invasive alien species Sentinel-2 (10-20-60 m) No --[473,520] Invasive species (1) Invasive alien species UAV-MSI No [161] --Invasive species (1) Invasive alien species UAV No [161] --Invasive species (1) LU/LC change Google Earth image No --[437] Invasive species (1) LU/LC change Landsat (15-30 m) No --[437] Invasive species (1) Mangrove ecosystems ALOS-2 No -[365] -Invasive species (1) Mangrove ecosystems Landsat (15-30 m) No -[365] -Invasive species (1) Mangrove ecosystems SPOT (~10-20 m) No -[365] -Invasive species (1) Tidal flat Sentinel-2 (10-20-60 m) No -[453] -Riparian species (1) Invasive alien species Landsat (15-30 m) No -[432] -Salt marsh species (1) Habitat Sentinel-1 (~10 m) No --[560] Salt marsh species (1) Habitat Sentinel-2 (10-20-60 m) No --[428,560] Salt marsh species (1) Habitat UAV-Lidar No -[142] -Salt marsh species (1) Habitat UAV-MSI No -[142] -Wetland species (1) Habitat Sentinel-1 (~10 m) No …”
Section: Parametermentioning
confidence: 99%
“…The fused information is then fed into a two-branch CNN to perform classification. Gao et al [23] created a technique for identifying the land cover of complicated wetlands with patchy, mixed vegetation. First, CNN is utilized to merge the HSI and multispectral characteristics.…”
Section: Literature Surveymentioning
confidence: 99%
“…There have been few studies that have used ViT to process temporal remote sensing images. For example, Gao et al [47] designed a spatio-spectral vision transformer (SSViT) to extract sequential relationships from fused hyperspectral and multispectral images, and Chen et al [48] presented a transformer-based structure for multi-temporal remote sensing interpretation. However, there are currently no studies that have comprehensively evaluated the performance of different ViT structures, as well as high-dimensional CNNs and RNNs, all of which have the ability to process time series in land-cover classification from multi-temporal remote sensing images.…”
Section: Introductionmentioning
confidence: 99%