Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The sensors available nowadays are not generating images of all objects in a scene with the same clarity at various distances. The progress in sensor technology improved the quality of images over recent years. However, the target data generated by a single image is limited. For merging information from multiple input images, image fusion is used. The basis of image fusion is on the image acquisition as well as on the level of processing and under this many image fusion techniques are available. Several input image acquisition techniques are available such as multisensor, multifocus, and multitemporal. Also, image fusion is performed in four different stages. These levels are the level of the signal, pixel level, level of feature, and level of decision-making. Further, the fusion methods are divided into two domains i.e spatial and frequency domains. The fusion in spatial domain images uses inputs directly to work on pixels, while the transition refers to frequency domain image fusion on input images before fusion. The limitation of spatial domain image fusion is spectral degradation. To overcome this limitation, the fusion of transform domain images is preferred which uses several transforms. The results generated by transform methods are superior to spatial domain methods. But there is a scope to improve the results or to find the optimized results. Optimization can be achieved by using evolutionary approaches. The evolutionary computation approach is an effective way of finding the required solution for a complex problem. An evolutionary algorithm is a guided random search used for optimization. The biological model of evolution and natural selection inspires it. The different types of evolutionary computing algorithms include Genetic algorithm, Genetic Programming, Evolutionary programming, Learning Classifier System, Ant Colony Optimization, Artificial Bee Colony Optimization, Particle Swarm Optimization, Evolution strategy, Swarm intelligence, Tabu Search, Cuckoo Search, etc. Three genetic algorithm-based image fusion techniques are proposed: a genetic algorithm with one population, a genetic algorithm with separate populations, and a block method. In the block method, an array of numbers in one chromosome is generated. The result obtained by the proposed techniques are compared with existing methods and observed that the results are improved. The graphical representation of performance parameters reflects that the block method is better.
The sensors available nowadays are not generating images of all objects in a scene with the same clarity at various distances. The progress in sensor technology improved the quality of images over recent years. However, the target data generated by a single image is limited. For merging information from multiple input images, image fusion is used. The basis of image fusion is on the image acquisition as well as on the level of processing and under this many image fusion techniques are available. Several input image acquisition techniques are available such as multisensor, multifocus, and multitemporal. Also, image fusion is performed in four different stages. These levels are the level of the signal, pixel level, level of feature, and level of decision-making. Further, the fusion methods are divided into two domains i.e spatial and frequency domains. The fusion in spatial domain images uses inputs directly to work on pixels, while the transition refers to frequency domain image fusion on input images before fusion. The limitation of spatial domain image fusion is spectral degradation. To overcome this limitation, the fusion of transform domain images is preferred which uses several transforms. The results generated by transform methods are superior to spatial domain methods. But there is a scope to improve the results or to find the optimized results. Optimization can be achieved by using evolutionary approaches. The evolutionary computation approach is an effective way of finding the required solution for a complex problem. An evolutionary algorithm is a guided random search used for optimization. The biological model of evolution and natural selection inspires it. The different types of evolutionary computing algorithms include Genetic algorithm, Genetic Programming, Evolutionary programming, Learning Classifier System, Ant Colony Optimization, Artificial Bee Colony Optimization, Particle Swarm Optimization, Evolution strategy, Swarm intelligence, Tabu Search, Cuckoo Search, etc. Three genetic algorithm-based image fusion techniques are proposed: a genetic algorithm with one population, a genetic algorithm with separate populations, and a block method. In the block method, an array of numbers in one chromosome is generated. The result obtained by the proposed techniques are compared with existing methods and observed that the results are improved. The graphical representation of performance parameters reflects that the block method is better.
Hydroxyapatite (HA) is a widely studied biomaterial for bone grafting and tissue engineering applications. The crystal structure of HA lends itself to a wide variety of substitutions, which allows for tailoring of material properties. Iron is of interest in ion substitution in HA due to its magnetic properties. The synthesis and characterization of iron-substituted hydroxyapatite (FeHA) have been widely studied, but there is a lack of studies on the sintering behaviors of FeHA materials compared to pure HA. Studying the sintering behavior of a substituted apatite provides information regarding how the substitution affects material characteristics such as stability and bulk mechanical properties, thereby providing insight into which applications are appropriate for the substituted material. In this study both pure HA and FeHA were synthesized, pressed into pellets, and then sintered at temperatures ranging from 900-1300°C and 600-1100°C, respectively. The study thoroughly examined the comparative sintering behaviors of the two materials using density measurements, mechanical testing, X-ray diffraction, and electron microscopy. It was found that FeHA is considerably less thermally stable than pure HA, with decomposition beginning around 1200°C for pure HA samples, while at 700°C for the FeHA. The FeHA also had a much lower mechanical strength than that of the pure HA. An in vitro cell culture study was conducted by immersing FeHA powder in cell culture media, with HA powder at equivalent doses as a control, verified that FeHA is a biocompatible material. Although the FeHA would be unsuitable for bulk applications, it is a potential material for a variety of biomedical applications including drug delivery, cancer hyperthermia, and bone tissue engineering composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.