This communication emanates from the lack of a European-scale study for investigating the potential threats that subsurface archaeological remains face today due to soil loss by water. This research analyses the impact of soil loss on potential subsurface archaeological evidence by integrating open geospatial datasets deriving from two pertinent European studies. The first study's dataset is related to soil erosion (soil loss provoked by water activity), which was reclassified into three groups alluding the level of threat on potential subsurface archaeological contexts, as follows:(1) areas presenting soil loss from 0 until 5 t/h per year, which are characterised as low threat areas;(2) areas presenting soil loss from 5 until 10 t/h per year, which are characterised as moderated threat; and (3) areas presenting soil loss beyond 10 t/h per year, which are considered as high-risk areas. The second study's dataset refers to the capacity of soils to preserve specific archaeological materials, classified in four categories based on the properties of the archaeological material (bones, teeth, and shells (bones); organic materials (organics); metals (Cu, bronze, and Fe) (metals); and stratigraphic evidence (strati). Both datasets were imported into a Geographical Information System (GIS) for further synthesis and analysis, while the average threat of soil loss per year was evaluated in a country level (nomenclature of territorial units for statistics (NUTS) level 0). The overall results show that approximately 10% of European soils that potentially preserve archaeological remains are in high threat due to soil loss, while similar patterns-on a European level-are found for areas characterised with moderate to high risk from the soil loss. This study is the first attempt to present a proxy map for subsurface cultural material under threat due to soil loss, covering the entire European continent.