“…Let φ : L(1, 0) ⊕ V (1,9) ⊕ V (1,16) → L(1, 0) ⊕ V (2,9) ⊕ V (2,16) be an L(1, 0)-module isomorphism such that φω = ω, φx 1 = x 2 , φy 1 = y 2 . (1,9) ⊕ V (1,16) . (1,9) be the intertwining operator of type L(1, 0) V (1,9) V (1,9) , and I 0 (φu, z)φv = Q 0 • Y (φu, z)φv for u, v ∈ V 1 be the intertwining operator of type L(1, 0) V (2,9) V (2,9) , where P 0 , Q 0 are the projections of V 1 and V 2 to L(1, 0) respectively.…”