Background and study aims Artificial intelligence (AI) models have demonstrated high diagnostic performance identifying neoplasia during digital single-operator cholangioscopy (DSOC). To date, there are no studies directly comparing AI vs. DSOC-guided probe-base confocal laser endomicroscopy (DSOC-pCLE). Thus, we aimed to compare the diagnostic accuracy of a DSOC-based AI model with DSOC-pCLE for identifying neoplasia in patients with indeterminate biliary strictures.
Patients and methods This retrospective cohort-based diagnostic accuracy study included patients ≥ 18 years old who underwent DSOC and DSOC-pCLE (June 2014 to May 2022). Four methods were used to diagnose each patient's biliary structure, including DSOC direct visualization, DSOC-pCLE, an offline DSOC-based AI model analysis performed in DSOC recordings, and DSOC/pCLE-guided biopsies. The reference standard for neoplasia was a diagnosis based on further clinical evolution, imaging, or surgical specimen findings during a 12-month follow-up period.
Results A total of 90 patients were included in the study. Eighty-six of 90 (95.5%) had neoplastic lesions including cholangiocarcinoma (98.8%) and tubulopapillary adenoma (1.2%). Four cases were inflammatory including two cases with chronic inflammation and two cases of primary sclerosing cholangitis. Compared with DSOC-AI, which obtained an area under the receiver operator curve (AUC) of 0.79, DSOC direct visualization had an AUC of 0.74 (P = 0.763), DSOC-pCLE had an AUC of 0.72 (P = 0.634), and DSOC- and pCLE-guided biopsy had an AUC of 0.83 (P = 0.809).
Conclusions The DSOC-AI model demonstrated an offline diagnostic performance similar to that of DSOC-pCLE, DSOC alone, and DSOC/pCLE-guided biopsies. Larger multicenter, prospective, head-to-head trials with a proportional sample among neoplastic and nonneoplastic cases are advisable to confirm the obtained results.