This paper presents a scheme for large volume plasma production using multiple highly portable compact ECR plasma sources (CEPS) (Ganguli et al 2016 Plasma Source Sci. Technol. 25 025026). The large volume plasma system (LVPS) described in the paper is a scalable, cylindrical vessel of diameter ≈1 m, consisting of source and spacer sections with multiple CEPS mounted symmetrically on the periphery of the source sections. Scaling is achieved by altering the number of source sections/the number of sources in a source section or changing the number of spacer sections for adjusting the spacing between the source sections. A series of plasma characterization experiments using argon gas were conducted on the LVPS under different configurations of CEPS, source and spacer sections, for an operating pressure in the range 0.5-20 mTorr, and a microwave power level in the range 400-500 W per source. Using Langmuir probes (LP), it was possible to show that the plasma density (~1 − 2 × 10 11 cm −3 ) remains fairly uniform inside the system and decreases marginally close to the chamber wall, and this uniformity increases with an increase in the number of sources. It was seen that a warm electron population (60-80 eV) is always present and is about 0.1% of the bulk plasma density. The mechanism of plasma production is discussed in light of the results obtained for a single CEPS (Ganguli et al 2016 Plasma Source Sci. Technol. 25 025026).