Galaxies living in rich environments are suffering different perturbations able to drastically affect their evolution. Among these, ram pressure stripping, i.e. the pressure exerted by the hot and dense intracluster medium (ICM) on galaxies moving at high velocity within the cluster gravitational potential well, is a key process able to remove their interstellar medium (ISM) and quench their activity of star formation. This review is aimed at describing this physical mechanism in different environments, from rich clusters of galaxies to loose and compact groups. We summarise the effects of this perturbing process on the baryonic components of galaxies, from the different gas phases (cold atomic and molecular, ionised, hot) to magnetic fields and cosmic rays, and describe their induced effects on the different stellar populations, with a particular attention to its role in the quenching episode generally observed in high density environments. We also discuss on the possible fate of the stripped material once removed from the perturbed galaxies and mixed with the ICM, and we try to estimate its contribution to the pollution of the surrounding environment. Finally, combining the results of local and high redshift observations with the prediction of tuned models and simulations, we try to quantify the importance of this process on the evolution of galaxies of different mass, from dwarfs to giants, in various environments and at different epochs.