This chapter presents identification methods using associative search of analogs and wavelet analysis. It investigates the properties of data mining-based identification algorithms which allow to predict: (i) the approach of process variables to critical values and (ii) process transition to chaotic dynamics. The methods proposed are based on the modeling of human operator decision-making. The effectiveness of the methods is illustrated with an example of product quality prediction in oil refining. The development of fuzzy analogs of associative identification models is further discussed. Fuzzy approach expands the application area of associative techniques. Finally, state prediction techniques for manufacturing resources are developed on the basis of binary models and a machine learning procedure, which is named associative rules search.