Fuzzy Classical Dynamics as a Paradigm for Emerging Lorentz Geometries
F. G. Scholtz,
P. Nandi,
S. K. Pal
et al.
Abstract:We show that the classical equations of motion for a particle on three dimensional fuzzy space and on the fuzzy sphere are underpinned by a natural Lorentz geometry. From this geometric perspective, the equations of motion generally correspond to forced geodesic motion, but for an appropriate choice of noncommutative dynamics, the force is purely noncommutative in origin and the underpinning Lorentz geometry some standard space-time with, in general, non-commutatuve corrections to the metric. For these choices… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.