The vehicle semi-active suspension is a typical multiple-input multiple-output system with strong couplings, actuator constraints and fast dynamics. This paper addresses the damping force regulation of shock-absorber in vehicle semiactive suspensions using an explicit model predictive control (EMPC) approach, which allows minimizing the system control objective function while satisfying the actuator constraints. The main advantage of the proposed approach is that the control law computation requirement is low, and thus the EMPC system is suitable for implementation in a standard automotive microcontroller. The design of the EMPC system consists of mathematical modeling, objective function determination, controller formulation and simulation validation. Presented simulation results verify that a superior control performance of the vehicle semi-active suspension system is achieved by the proposed EMPC control approach compared with the performance obtained using conventional control method.