Pedestrian level of service (PLOS) is an important measure of performance in the analysis of existing pedestrian crosswalk conditions. Many researchers have developed PLOS models based on pedestrian delay, turning vehicle effect, etc., using the conventional regression method. However, these factors may not effectively reflect the pedestrians' perception of safety while crossing the crosswalk. The conventional regression method has failed to estimate accurate PLOS because of the primary assumption of an arbitrary probability distribution and vagueness in the input data. Moreover, PLOS categories in existing studies are based on rigid threshold values and the boundaries that are not well defined. Therefore, it is an important attempt to develop a PLOS model with respect to pedestrian safety, convenience, and efficiency at signalized intersections. For this purpose, a video-graphic and user perception surveys were conducted at selected nine signalized intersections in Mumbai, India. The data such as pedestrian, traffic, and geometric characteristics were extracted, and significant variables were identified using Pearson correlation analysis. A consistent and statistically calibrated PLOS model was developed using fuzzy linear regression analysis. PLOS was categorized into six levels (A-F) based on the predicted user perception score, and threshold values for each level were estimated using the fuzzy c-means clustering technique. The developed PLOS model and threshold values were validated with the fieldobserved data. Statistical performance tests were conducted and the results provided more accurate and reliable solutions. In conclusion, this study provides a feasible alternative to measure pedestrian perception-based level of service at signalized intersections. The developed PLOS model and threshold values would be useful for planning and designing pedestrian facilities and also in evaluating and improving the existing conditions of pedestrian facilities at signalized intersections.Keywords Pedestrian Á Signalized intersection Á Level of service Á Fuzzy regression Á Fuzzy c-means Pedestrian perception-based level of service model at signalized intersection crosswalks 267 123