The safety operation of dams after extreme load is an important frontier research topic in the field of dam engineering. The dam health monitoring provides a reliable data basis for a safety evaluation after extreme loads. This study proposes a novel data-driven fusion model for a dam safety evaluation after extreme load based on monitoring data derived by sensors. First, the relationship between dam environmental quantity and effect quantity is deeply excavated based on bidirectional long short-term memory (BiLSTM) network, which is a deeply improved LSTM model. Aiming at the parameter optimization problem of BiLSTM model, sparrow search algorithm (SSA), which is an advanced optimization algorithm, is integrated. Second, conducting the constructed SSA-BiLSTM model to estimate the change law of dam effect quantity after the extreme load. Finally, the Mann–Whitney U-test theory is introduced to establish the evaluation criterion of the dam safety state. Project case shows that the multiple quantitative prediction accuracy evaluation indicators of the proposed method are significantly superior to the comparison method, with mean absolute percentage error (MAPE) and mean absolute error (MAE) values decreasing by 30.5% and 27.8%, respectively, on average. The proposed model can accurately diagnose the dam safety state after the extreme load compared with on-site inspection results of the engineering department, which provides a new method for dam safety evaluation.