Abstract:Generative Adversarial Networks (GANs) are well-known tools for data generation and semi-supervised classification. GANs, with less labeled data, outperform Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) in classification across various tasks, this shows promise for developing GANs capable of trespassing into the domain of semi-supervised regression. However, developing GANs for regression introduce two major challenges: (1) inherent instability in the GAN formulation and (2) performing r… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.