Agricultural tractors are subject to lateral forces when traveling on slopes, making it difficult to accurately follow a set course. In this paper, a steering compensation method is first proposed based on the force analysis of a tractor traveling on slopes, which compensates the steering angle according to the friction force and gravity force imposed on the tractor. Further, when traveling on slopes, acceleration and a load applied to the tractor are usually time-varying. To address this problem, this paper proposes a steering compensator that can automatically adjust a compensation coefficient, as well as a design for a model predictive controller with the steering compensator for a tractor. Simulation results show that under different traveling speeds, turning radius, and slope angles, the steering compensator allows the tractor to travel more smoothly, i.e., the distance between the actual traveling route and the reference route fluctuates within a smaller range. Further, during straight-line traveling, the static error can be effectively reduced, i.e., the distance between the actual traveling route and the reference route is closer to zero. Overall, the steering compensator enables the tractor to track the reference route more accurately.