During the coronavirus disease 2019 (COVID-19) pandemic, which has witnessed over 772 million confirmed cases and over 6 million deaths globally, the outbreak of COVID-19 has emerged as a significant medical challenge affecting both affluent and impoverished nations. Therefore, there is an urgent need to explore the disease mechanism and to implement rapid detection methods. To address this, we employed the desorption separation ionization (DSI) device in conjunction with a mass spectrometer for the efficient detection and screening of COVID-19 urine samples. The study encompassed patients with COVID-19, healthy controls (HC), and patients with other types of pneumonia (OP) to evaluate their urine metabolomic profiles. Subsequently, we identified the differentially expressed metabolites in the COVID-19 patients and recognized amino acid metabolism as the predominant metabolic pathway involved. Furthermore, multiple established machine learning algorithms validated the exceptional performance of the metabolites in discriminating the COVID-19 group from healthy subjects, with an area under the curve of 0.932 in the blind test set. This study collectively suggests that the small-molecule metabolites detected from urine using the DSI device allow for rapid screening of COVID-19, taking just three minutes per sample. This approach has the potential to expand our understanding of the pathophysiological mechanisms of COVID-19 and offers a way to rapidly screen patients with COVID-19 through the utilization of machine learning algorithms.