The productivity of a crop is related to the water demand inserted in its development. The measurement of water and its optimization directly influences the final costs of crop production for agricultural producers. In this sense, the objective of this study is evaluating the fuzzy modeling in estimating the productivity of the radish crop (fresh phytomass of the tuberous root) affected by different irrigation depths (25%, 50%, 75%, 100%, and 125%), based on evapotranspiration of the crop (ETc). To measure the results, two fuzzy systems (with triangular and Gaussian membership functions respectively) and a polynomial regression model were developed to perform model validation comparisons. The fuzzy modeling showed a better fit of the data compared to the polynomial regression model, with reduced errors (RMSE with values 6.3 and 6.9 in the fuzzy models versus 8.8 in the regression model) and higher correlation coefficient (0.54 and 0.5 fuzzy versus 0.1 regression). The triangular fuzzy model estimated the best crop yield (31.9 g of fresh phytomass) when using a 100% ETc depth. Also, the curve generated by the fuzzy model accurately represents all the productivity averages in each depth, in addition to this model presenting the smallest errors (compared to the triangular model and the regression model) and the highest R². However, the Gaussian fuzzy model proved to be more efficient in representing the agronomic reality, as it does not have peaks and valleys, and it is a smooth model in both growth and degrowth.