2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics 2012
DOI: 10.1109/sisy.2012.6339544
|View full text |Cite
|
Sign up to set email alerts
|

Fuzzy multicriteria analysis of m-learning system

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2013
2013
2015
2015

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 13 publications
0
2
0
2
Order By: Relevance
“…AHP assisted them in the design of IJWIS 10,2 their algorithm, which utilized a rule-based system to decide about suggesting different mobile devices to the general public. They determined that AHP is a reliable tool to examine user preferences; Stanic et al (2012) implemented a multi-criteria prioritization algorithm to determine activity preferences in the e-learning materials. The users' opinions are processed by a fuzzy system that adapts the learning materials according to preferences.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…AHP assisted them in the design of IJWIS 10,2 their algorithm, which utilized a rule-based system to decide about suggesting different mobile devices to the general public. They determined that AHP is a reliable tool to examine user preferences; Stanic et al (2012) implemented a multi-criteria prioritization algorithm to determine activity preferences in the e-learning materials. The users' opinions are processed by a fuzzy system that adapts the learning materials according to preferences.…”
Section: Related Workmentioning
confidence: 99%
“…This algorithm comprises a rule-based system and a k-means clustering algorithm. Although AHP has been utilized by other authors to design the rule-based adaptation algorithm (Katayama et al, 2005;Stanic et al, 2012), the combination of AHP, a rule-based system, and k-means clustering is novel in the context of adaptive e-learning systems.…”
Section: Introductionmentioning
confidence: 99%
“…Stanić et al [129], implementan un algoritmo de priorización multi-criterio para determinar las preferencias de actividades en los materiales m-learning. La opinión de los usuarios, en combinación con un sistema difuso, permite adaptar los materiales de aprendizaje de mayor preferencia.…”
Section: Trabajos Con Relevancia En Adaptaciónunclassified
“…Al diseñar el proceso adaptador, se evidenció un alto número de variables provenientes del modelo adaptativo (ALS), tales como: las preferencias, la discapacidad, el estilo de aprendizaje, las dificultades en aspectos como la memoria, atención y lenguaje del estudiante, requiriendo de una técnica de priorización. La utilización de AHP (Analytic Hierarchy Process), permitió establecer prioridades en el proceso de adaptación de contenido y así reducir conflictos entre los mismos por ejemplo, conflictos entre las preferencias del estudiante y su estilo de aprendizaje o recomendaciones de experto para el despliegue de actividades en el caso en el que se presente algún tipo de discapacidad o dificultades en su proceso de aprendizaje así como lo realizado por otros autores en otras aplicaciones [127][128] [129][131] [132].…”
Section: Indagación a Docentesunclassified