Bell-type inequalities on orthomodular lattices, in which conjunctions of propositions are not modeled by meets but by maps for simultaneous measurements (s-maps), are studied. It is shown, that the most simple of these inequalities, that involves only two propositions, is always satisfied, contrary to what happens in the case of traditional version of this inequality in which conjunctions of propositions are modeled by meets. Equivalence of various Bell-type inequalities formulated with the aid of bivariate maps on orthomodular lattices is studied. Our investigations shed new light on the interpretation of various multivariate maps defined on orthomodular lattices already studied in the literature. The paper is concluded by showing the possibility of using s-maps and j-maps to represent counterfactual conjunctions and disjunctions of non-compatible propositions about quantum systems.