Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
<div>Trajectory tracking control, as one of the core technologies of intelligent driving vehicles, determines the driving performance and safety of intelligent driving vehicles and has received extensive attention and research. In recent years, most of the research results of trajectory tracking control are only applicable to conventional working conditions; however, the actual operating conditions of intelligent driving vehicles are complex and variable, so the research of trajectory tracking control algorithm should be extended to the high-speed low-adhesion coefficient, large curvature, variable curvature, and other compound limit working conditions. This requires more consideration of the vehicle dynamics in the controller design. In this article, a comprehensive review of trajectory tracking control under extreme operating conditions is conducted from three levels: vehicle dynamics model, vehicle speed tracking (longitudinal motion control), and path tracking (transverse motion control), and the existing research results are analyzed and summarized to obtain the research trends and pain points and difficulties in each field. On this basis, the future outlook of trajectory tracking control is proposed, which is expected to provide some help and inspiration to the research workers in this field.</div>
<div>Trajectory tracking control, as one of the core technologies of intelligent driving vehicles, determines the driving performance and safety of intelligent driving vehicles and has received extensive attention and research. In recent years, most of the research results of trajectory tracking control are only applicable to conventional working conditions; however, the actual operating conditions of intelligent driving vehicles are complex and variable, so the research of trajectory tracking control algorithm should be extended to the high-speed low-adhesion coefficient, large curvature, variable curvature, and other compound limit working conditions. This requires more consideration of the vehicle dynamics in the controller design. In this article, a comprehensive review of trajectory tracking control under extreme operating conditions is conducted from three levels: vehicle dynamics model, vehicle speed tracking (longitudinal motion control), and path tracking (transverse motion control), and the existing research results are analyzed and summarized to obtain the research trends and pain points and difficulties in each field. On this basis, the future outlook of trajectory tracking control is proposed, which is expected to provide some help and inspiration to the research workers in this field.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.