Many studies have identified quantitative trait loci (QTLs) that contribute to continuous variation in heritable traits of interest. However, general principles regarding the distribution of QTL numbers, effect sizes, and combined effects of multiple QTLs remain to be elucidated. Here, we characterize complex genetics underlying inheritance of thousands of transcript levels in a cross between two strains of Saccharomyces cerevisiae. Most detected QTLs have weak effects, with a median variance explained of 27% for highly heritable transcripts. Despite the high statistical power of the study, no QTLs were detected for 40% of highly heritable transcripts, indicating extensive genetic complexity. Modeling of QTL detection showed that only 3% of highly heritable transcripts are consistent with single-locus inheritance, 17-18% are consistent with control by one or two loci, and half require more than five loci under additive models. Strikingly, analysis of parent and progeny trait distributions showed that a majority of transcripts exhibit transgressive segregation. Sixteen percent of highly heritable transcripts exhibit evidence of interacting loci. Our results will aid design of future QTL mapping studies and may shed light on the evolution of quantitative traits.Beavis effect ͉ epistasis ͉ transgressive segregation M ost heritable traits show continuous variation in a population. Such quantitative traits have been a subject of intensive study (see refs. 1-4 for reviews). Identification of genetic polymorphisms underlying quantitative traits, known as quantitative trait loci or QTLs, is of interest in medical genetics, where they can provide insights into disease mechanisms and lead to new diagnostics and therapeutics, and in agricultural genetics, where they can aid breeding programs. Genetic factors underlying quantitative traits also play a crucial role in evolutionary theory. Most quantitative traits appear to be genetically complex, i.e., controlled by multiple QTLs (2).Linkage mapping of QTLs has been reported for thousands of quantitative traits. In a handful of cases, the DNA sequence polymorphisms underlying a quantitative trait have been identified (4-8). However, it has proven difficult to comprehensively identify the multiple QTLs that combine to determine the complex genetic architecture of a trait, largely because of limitations in the statistical power of mapping experiments (9). As a result, the principles that govern genetic complexity remain an area of active research. Are traits more likely to be controlled by a few loci of large effect or many loci of small effect (10, 11)? Are most QTL effects additive, or do QTLs often act in a nonadditive (epistatic) manner (12)? Does inheritance of alleles from a given parent at multiple QTLs usually affect a trait in the same direction, as predicted by certain evolutionary models (13)? In addition to elegant theoretical advances (1, 10, 11, 13), several studies have surveyed large numbers of traits empirically to identify genetic trends (14-16). But many que...