We investigated the additive effect of repetitive transcranial magnetic stimulation (rTMS) combined with granulocyte-colony stimulating factor (G-CSF) on functional outcome in the early subacute phase of stroke. Seven-week-old male rats were subjected to permanent middle cerebral artery occlusion (MCAo) and were divided into four groups: normal saline administration with sham rTMS (group 1, n = 15), G-CSF administration with sham rTMS (group 2, n = 15), G-CSF with 1 Hz rTMS (group 3, n = 14), and G-CSF with 20 Hz rTMS (group 4, n = 15). Animals received G-CSF or saline for 5 days from the day of MCAo and were concurrently treated with 20-min rTMS on their lesioned hemisphere for 2 weeks. Neurological functional score was worse in group 4 compared to that in group 2 on day 15. In Western blots conducted on day 25, phosphorylation of endothelial nitric oxide synthase was markedly lower in groups 2, 3, and 4 than that in group 1 in the ischemic border zone. PECAM-1 expression at ischemic core was lower in groups 4 than in group 2. Caspase-3 expression was markedly higher in groups 4 than in group 1, 2, 3 at ischemic core. Iba1 expression was higher in groups 4 than in group 1, 2 at ischemic core. G-CSF combined with rTMS administered in the early subacute phase of ischemic stroke may exert a hazardous effect on functional recovery, possibly due to impaired angiogenic mechanism, decreased cell survival, and increased inflammation.