Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Metastatic brain tumors, also called brain metastasis (BM), represent a challenging complication of advanced tumors. Tumors that commonly metastasize to the brain include lung cancer and breast cancer. In recent years, the prognosis for BM patients has improved, and significant advancements have been made in both clinical and preclinical research. This review focuses on BM originating from lung cancer and breast cancer. We briefly overview the history and epidemiology of BM, as well as the current diagnostic and treatment paradigms. Additionally, we summarize multiomics evidence on the mechanisms of tumor occurrence and development in the era of artificial intelligence and discuss the role of the tumor microenvironment. Preclinically, we introduce the establishment of BM models, detailed molecular mechanisms, and cutting‐edge treatment methods. BM is primarily treated with a comprehensive approach, including local treatments such as surgery and radiotherapy. For lung cancer, targeted therapy and immunotherapy have shown efficacy, while in breast cancer, monoclonal antibodies, tyrosine kinase inhibitors, and antibody–drug conjugates are effective in BM. Multiomics approaches assist in clinical diagnosis and treatment, revealing the complex mechanisms of BM. Moreover, preclinical agents often need to cross the blood–brain barrier to achieve high intracranial concentrations, including small‐molecule inhibitors, nanoparticles, and peptide drugs. Addressing BM is imperative.
Metastatic brain tumors, also called brain metastasis (BM), represent a challenging complication of advanced tumors. Tumors that commonly metastasize to the brain include lung cancer and breast cancer. In recent years, the prognosis for BM patients has improved, and significant advancements have been made in both clinical and preclinical research. This review focuses on BM originating from lung cancer and breast cancer. We briefly overview the history and epidemiology of BM, as well as the current diagnostic and treatment paradigms. Additionally, we summarize multiomics evidence on the mechanisms of tumor occurrence and development in the era of artificial intelligence and discuss the role of the tumor microenvironment. Preclinically, we introduce the establishment of BM models, detailed molecular mechanisms, and cutting‐edge treatment methods. BM is primarily treated with a comprehensive approach, including local treatments such as surgery and radiotherapy. For lung cancer, targeted therapy and immunotherapy have shown efficacy, while in breast cancer, monoclonal antibodies, tyrosine kinase inhibitors, and antibody–drug conjugates are effective in BM. Multiomics approaches assist in clinical diagnosis and treatment, revealing the complex mechanisms of BM. Moreover, preclinical agents often need to cross the blood–brain barrier to achieve high intracranial concentrations, including small‐molecule inhibitors, nanoparticles, and peptide drugs. Addressing BM is imperative.
This study aimed to generate Car- and Pac-resistant cell lines from the human lung adenocarcinoma H1792 cell line, designated as H1792/Car and H1792/Pac, and perform transcriptome sequencing to identify potential targets. Common differentially expressed genes (Co-DEGs) in both resistant cell lines were identified, followed by hub gene identification. Online validation was conducted through GEPIA and Kaplan–Meier Plotter platforms, with experimental validation performed using real-time quantitative PCR (RT-qPCR). After six months, the H1792/Car and H1792/Pac cell lines exhibited a 10.7-fold and 5.6-fold increase in resistance to Car and Pac, respectively. Flow cytometry analysis demonstrated that both resistant cell lines were resistant to cell cycle arrest and apoptosis induced by Car or Pac. Transcriptomic sequencing identified 123 Co-DEGs, including 72 upregulated and 51 downregulated genes, consistently expressed in both H1792/Car and H1792/Pac cell lines. Among these, 13 hub genes were identified, with colony-stimulating factor 3 (CSF3) uniquely associated with post-progression survival (PPS) in adenocarcinoma patients undergoing chemotherapy. Notably, CSF3 expression was significantly elevated in both H1792/Car and H1792/Pac compared to parental cells. These findings underscore the value of drug-resistant models in uncovering critical biomarkers. CSF3 emerges as a promising guiding marker or potential molecular target for optimizing Car- and Pac-based doublet regimens.
Bone metastasis (BM) is a common complication of cancer and contributes to a higher mortality rate in patients with cancer. The treatment of BM remains a significant challenge for oncologists worldwide. The colony-stimulating factor (CSF) has an important effect on the metastasis of multiple cancers. In vitro studies have shown that CSF acts as a cytokine, promoting the colony formation of hematopoietic cells by activating granulocytes and macrophages. Other studies have shown that CSF not only promotes cancer aggressiveness but also correlates with the development and prognosis of various types of cancer. In recent years, the effect of CSF on BM has been primarily investigated using cellular and animal models, with limited clinical studies available. The present review discussed the composition and function of CSF, as well as its role in the progression of BM across various types of cancer. The mechanisms by which osteoclast-and osteoblast-mediated BM occur are comprehensively described. In addition, the mechanisms of action of emerging therapeutic agents are explored for their potential clinical applications. However, further clinical studies are required to validate these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.